Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Arch. endocrinol. metab. (Online) ; 59(3): 210-214, 06/2015. tab, graf
Article in English | LILACS | ID: lil-751317

ABSTRACT

Objective The aim of this study was to evaluate the genetic expression of adipokines in the adipocytes of monosodium glutamate (MSG)-treated obese rats submitted to physical activity.Materials and methods Obesity was induced by neonatal MSG administration. Exercised rats (MSG and control) were subjected to swim training for 30 min for 10 weeks, whereas their respective controls remained sedentary. Total RNA was obtained from sections of the mesenteric adipose tissue of the rats. mRNA levels of adiponectin (Adipoq), tumor necrosis factor alpha (Tnf), peroxisome proliferator-activated receptor alpha (Ppara), and peroxisome proliferator-activated receptor gamma (Pparg) adipokines were quantified by quantitative Real-Time Polymerase Chain Reaction (qRT-PCR).Results In the exercise-trained control group, the expression of Adipoq increased compared to the sedentary control, which was not observed in the MSG-obese rats. Increased levels of Tnf in MSG-obese rats were not reversed by the swim training. The expression of Ppara was higher in sedentary MSG-obese rats compared to the sedentary control. Swimming increased this adipokine expression in the exercise-trained control rats compared to the sedentary ones. mRNA levels of Pparg were higher in the sedentary MSG-rats compared to the sedentary control; however, the exercise did not influenced its expression in the groups analyzed.Conclusions In conclusion, regular physical activity was not capable to correct the expression of proinflammatory adipokines in MSG-obese rat adipocytes.


Subject(s)
Animals , Humans , Adjuvants, Immunologic , Molecular Mimicry/immunology , Tumor Necrosis Factors , Vaccines, Synthetic/immunology , Vaccines/chemistry , Vaccines/immunology , Adjuvants, Immunologic/chemistry , /immunology , /chemistry , /metabolism , Cancer Vaccines/chemistry , Cancer Vaccines/immunology , Genetic Vectors/genetics , Genetic Vectors/immunology , Immunotherapy , Ligands , Lentivirus/genetics , Lentivirus/immunology , Macaca mulatta , Neoplasms/immunology , Neoplasms/therapy , Protein Multimerization , TNF-Related Apoptosis-Inducing Ligand/chemistry , Toll-Like Receptors/agonists , Tumor Necrosis Factors/chemistry , Vaccines, Synthetic/chemistry , Viral Matrix Proteins/immunology
2.
Indian J Biochem Biophys ; 2007 Jun; 44(3): 140-4
Article in English | IMSEAR | ID: sea-26545

ABSTRACT

The objective of this study was to determine whether certain retro-inverso peptides have the potential to act as synthetic vaccines in mice, when immunized by injection or orally. Immunization of mice parenterally with conjugates of three such retro-inverso peptides and orally with the unconjugated peptides elicited generally high titres of anti-peptide antibodies. Antibodies against the same three peptides cross-reacted by binding strongly in ELISA to the native peptides and vice versa, regardless of the mode of immunization. Antibodies against a retro-inverso diphtheria peptide also reacted strongly with diphtheria toxin. Seven of 8 mice, immunized by injection of the conjugate of a retro-inverso derivative of robustoxin [a lethal spider (Atrax robustus) venom toxin] were protected from challenge involving injection with twice the minimum lethal dose of A. robustus venom containing the toxin.


Subject(s)
Adjuvants, Immunologic , Administration, Oral , Animals , Antigens/chemistry , Enzyme-Linked Immunosorbent Assay , Immunization/methods , Infusions, Parenteral , Mice , Models, Chemical , Peptides/chemistry , Plasmodium falciparum/metabolism , Serine/chemistry , Spider Venoms , Vaccination/methods , Vaccines, Synthetic/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL